Parasitic copepods may be important freshwater population regulatory factors by impairing swimming, stress resistance, and being a vector for pathogens

Crystal L. Herron

Natassia Ruse, Mike L. Kent, Carl B. Schreck Presented to WFSR Corvallis, OR. February 6th, 2018

Salmincola californiensis

0.50 mm

Monzyk et al. 2012

Assess the potential physiologic affect *S. californiensis* could have on juvenile Chinook Salmon

Objectives

1. Create method of copepod infection *

- 2. Determine if copepod infection impairs fish's physiologic capacity
- 3. If impairment, is there a tolerable threshold?

Collect & Raise

Hatchery infection

Reservoir infection

Reservoir infection

Endurance challenge

Exhaustion?

BS1H DS882

Adjustment period t=15 min v=10.16cm/s Increase speed t=9 min

Experimental trial t=20 min max, 30 sec exhaustion v=23.11cm/s

> Swim time Gill damage

DRESL

AVID STATES

Swimming

Swimming

Herron et al. In Press

50

- Zero Copepods
- Low Copepods

Percent

Herron et al. In Press

Gill Damage

Percent

Herron et al. In Press

Objectives

1. Create method of copepod infection

- Determine if copepod infection impairs fish's physiologic capacity.
 Yes- impaired swimming performance
- 3. If impairment, is there a tolerable threshold? Some fish affected by 1-2. Damage may be better predictor

Herron, C.L., M.L. Kent, C.B. Schreck. In Press. Swimming Endurance in Juvenile Chinook Salmon (*Oncorhynchus tshwaytscha*) infected with *Salmincola californiensis*. Journal of Aquatic Animal Health.

Vectors for disease?

Aeromonas salmonicida

Validate *S. californiensis'* capacity to act as vectors for disease

Aeromonas salmonicida

Objectives

- 1. Detect *A. salmonicida* in copepod egg sacs from infected hosts.
 - Juveniles
 - Adults
- 2. Infect disease naïve fish with *A. salmonicida* using copepods as the vehicle.

Juvenile fish injected with A. salmonicida

Fish ID	Pathogen Presence	Egg Sacs Tested	Egg Sacs +
1	+	5	4
2	-	5	0
3	+	11	6
4	-	2	0
5	+	3	3
6	+	4	3

Mortalities already infected with A. salmonicida

Adult fish A. salmonicida detection

Fish ID	Pathogen Presence	Copepods	Culture +	PCR+
3*	+	9	4	5
4	+	2	0	0
5	+	2	2	1
6	+	2	1	
7	+	2	0	0
8	+	1	1	0
10	+	1	1	
13	+	2	1	1
15	-	1	0	0

Objectives

- 1. Detect *A. salmonicida* in copepod egg sacs from infected hosts.
 - Juveniles
 - Adults
- 2. Infect disease naïve fish with *A. salmonicida* using copepods as the vehicle.
 - To be continued... full time master's student needed.

Where are the copepods coming from?

We found

Copepods reduce swimming endurance

Copepods carry infectious bacteria

Acknowledgements

- Schreck lab
- Fish Performance and Genetics Laboratory
- Kent lab
- Rockey lab
- Todd Pierce

Questions?

Location

Willamette Hatchery

Minto Fish Facility

Foster Dam

McKenzie Hatchery

Cougar Dam

Fish Performance and Genetics Laboratory

Vigil et al. 2015

2016 Summary Fish injected with *A. salmonicida*

Fish #	Kidney	Spleen	Egg Sacs
1	-	-	5/5 -
2	+	+	4/5 +
3	+	+	6/11 +
4	-	-	2/2 -
5	+		3/3+
6	+	+	3/4 +

~50% or more of the egg sacs from infected fish tested at least weak + Eggs sacs from negative fish: All negative

2017 Positive Fish: unsplit egg sacs from positive fish

Fish #	Copepod #	Sac A	Sac B
3	1	Culture +	Culture +
	2	Culture +	Culture +
	3	Culture +	Culture +
	4	Culture +	Culture +
	5	PCR +	PCR +
	6	PCR +	PCR +
	7	PCR +	PCR -
	8	PCR +	PCR +
	9	PCR +	PCR +
4	1	Culture -	
	2	PCR -	

Split egg sacs

Fish #	Copepod #	Sac A	Sac B
5	1	Culture +	PCR -
	2	Culture +	PCR +
6	1	Culture +	
	2	Culture -	
7	1	Culture -	PCR -
	2	Culture -	PCR-
8	1	Culture +	PCR -
10	1	Culture +	
10	1	Culture +	PCR +
13	2	Culture -	PCR -
*15	1	Culture - & PCR -	

2017 Results – Non-split Egg Sacs

Fish 4

2017 Results – Split Egg Sacs

2017 Results – Culture Only

